A Weird Imagination

HTTP over Unix sockets

Posted in

The problem#

Previously, I wrote about using named pipes for IPC to allow controlling a process by another process running on the same computer possibly as a different user, with the access control set by file permissions. But I observed that the restricted unidirectional communication mechanism limited how useful it could be, suggesting another design might be better in settings where bidirectional communication including confirmation of commands may be useful.

Is there a good general solution to this problem without losing the convenience of access control via file permissions?

The solution#

Let's use everyone's favorite RPC mechanism: HTTP. But HTTP normally runs over TCP, and even if we bind to localhost, the HTTP server would still be accessible to any user on the same computer and require selecting a port number that's not already in use. Instead, we can bind the HTTP server to a Unix socket, which similar to named pipes, look a lot like a file, but allow communication like a network socket.

Python's built-in HTTP server doesn't directly support binding to a Unix socket, but the following is slightly modified from an example I found of how to get it to:

import http.server
import json
import os
import socket
import sys
import traceback

def process_cmd(cmd, *args):
    print(f"In process_cmd({cmd}, {args})...")

class HTTPHandler(http.server.BaseHTTPRequestHandler):
    def do_POST(self):
        size = int(self.headers.get('Content-Length', 0))
        body = self.rfile.read(size)
        args = json.loads(body) if body else []
        try:
            result = process_cmd(self.path[1:], *args)
            self.send(200, result or 'Success')
        except Exception:
            self.send(500, str(traceback.format_exc()))

    def do_GET(self):
        self.do_POST()

    def send(self, code, reply):
        # avoid exception in server.py address_string()
        self.client_address = ('',)
        self.send_response(code)
        self.end_headers()
        self.wfile.write(reply.encode('utf-8'))

sock_file = sys.argv[1]
try:
    os.remove(sock_file)
except OSError:
    pass
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
sock.bind(sock_file)
sock.listen(0)

server = http.server.HTTPServer(sock_file, HTTPHandler,
                                False)
server.socket = sock
server.serve_forever()

sock.shutdown(socket.SHUT_RDWR)
sock.close()
os.remove(sock_file)

Then you can query the server using curl:

$ ./server.py http.socket &
$ curl --unix-socket http.socket http://anyhostname/foo
[GET response...]
$ curl --unix-socket http.socket http://anyhostname/foo \
    --json '["some", "args"]'
[POST reponse...]

or in Python, using requests-unixsocket:

import requests_unixsocket
session = requests_unixsocket.Session()
host = "http+unix//http.socket/"
r = session.get(host + "foo")
# Inspect r.status_code and r.text or r.json()
r = session.post(host + "foo", json=["some", "args"])
# Inspect r.status_code and r.text or r.json()

The details#

Read more…

Pelican publish without downtime

Posted in

The problem#

My existing script for publishing my blog has Pelican run on the web server and generate the static site directly into the directory served by nginx. This has the effect that while the blog is being published, it is inaccessible or some of the pages or styles are missing. The publish takes well under a minute, so this isn't a big issue, but there's no reason for any downtime at all.

The solution#

Instead of serving the output/ directory, instead generate it and then copy it over by changing the make publish line in schedule_publish.sh to the following:

make publish || exit 1
if [ -L output_dir ]
then
    cp -r output output_dir/
    rm -rf output_dir/html.old
    mv output_dir/html output_dir/html.old
    mv output_dir/output output_dir/html
fi

where output_dir/ is a symbolic link to the parent of the directory actually being served and html/ is the directory actually being served (which output/ previously was a symbolic link to).

The details#

Read more…